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Abstract 
 

 

 Michael Lewis’s book, Moneyball, is the story of an innovative manager who 

exploits an inefficiency in baseball’s labor market over a prolonged period of time.  We 

evaluate this claim by applying standard econometric procedures to data on player 

productivity and compensation from 1999 to 2004.  These methods support Lewis’s 

argument that the valuation of different skills was inefficient in the early part of this 

period, and that this was profitably exploited by managers with the ability to generate and 

interpret statistical knowledge.  This knowledge became increasingly dispersed across 

baseball teams during this period.  Consistent with Lewis's story and economic reasoning, 

the spread of this knowledge is associated with the market correcting the original mis-

pricing.   
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An Economic Evaluation of the Moneyball Hypothesis 
 

 

Imagine a good produced primarily with labor.  The particular skills involved are 

unique to the production of this good.  The skills are also multi-dimensional, and 

individual workers have varying quantities of skill in each dimension.  The associated 

labor market is well known.  It receives daily attention from the print and broadcast 

media, along with periodic in-depth analysis from academic economists.  Indeed, a case 

could be made that more is known about pay and performance in this market than any 

other labor market in the American economy. 

Into this milieu strides a financial reporter who makes the following claim:  the 

valuation of skill in this market is grossly inefficient.  The inefficiency is so large that a 

former worker with mediocre talent and two quantitative analysts could exploit it to great 

effect.  The firm that hired them was able to out-manage and out-produce the vast 

majority of the competition while operating on a shoestring budget.  This is the tale told 

by Michael Lewis’ (2003) instant classic, Moneyball, about the use of innovative thinking 

and statistical analysis in the management of the Oakland Athletics baseball club.   

As the characterization above makes clear, the thesis of  Moneyball is economic at 

its core, and indeed is potentially refutable.  Yet "the biography of an idea," as Lewis 

(2004) called his work, does not verify itself, however convincing the argument.  We 

examine the argument here.  We cast it in refutable form, and test it with elementary 

econometric tools.  We find that Lewis’ claims bear close scrutiny.  In particular, we 

confirm that the baseball labor market exhibited significant inefficiency in recent years.  
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This inefficiency was sufficiently large that knowledge of its existence, and the ability to 

exploit it, enabled the Athletics to obtain a substantial advantage over their competition.  

We also find that Lewis’ timing was impeccable.  The ideas in Moneyball, belying 

somewhat ignorant protestations from entrenched interests in the baseball world (Lewis, 

2004), spread with sufficient speed that prices in baseball’s labor market no longer 

exhibit the “Moneyball anomaly.” 

Sports often generate ideal conditions in which the choices of market participants 

can be observed and studied.  The value of this is becoming more widely appreciated.  

Notable studies which illustrate the range of economic issues where data from sports can 

lend insight are Robert E. McCormick and Robert Tollison (1986), William O. Brown 

and Raymond D. Sauer (1993a, 1993b), and Pierre-Andre' Chiappori, Stephen D. Levitt, 

and Timothy Groseclose (2002).  These papers analyze how the likelihood of punishment 

affects crime (fouls on the basketball court), the effects of psychology and information on 

market prices (point spreads for NBA games), and strategic optimization in a repeated 

game (the puzzling unwillingness of penalty-kick takers to shoot the ball down the 

middle, when goalkeepers almost always dive one way or the other).   

The present paper's contribution may be thought of as a depiction of particularly 

clear case of mis-pricing, accompanied by profitable innovation and subsequent 

adjustment in the labor market.  We document this by evaluating the measures of 

offensive productivity discussed in the book, and measuring their impact on game 

outcomes.  We then assess the valuation of skill in baseball's labor market.  Consistent 

with the claims made in Moneyball, important batting skills were undervalued in the 

marketplace during the initial periods that we study.  However, a diffusion of the 
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knowledge discussed in the book subsequently took place.  We find that the anomaly 

disappears when members of the Athletics' organization were hired to run competing 

franchises.  

The paper proceeds as follows.  Section I describes measurements of batting skill 

in baseball.  Section II relates these measures to the primary objective of winning games.  

It is here that we introduce the idea that certain elements of the game were not properly 

understood in the conventional wisdom of baseball.  Section III examines the valuation of 

these skills in the labor market, and Section IV concludes.  

 

I.  Productivity Measurement in Major League Baseball 

A.  Standard Measures 

Our focus here, as in Lewis (2003), is on the measurement of offensive 

productivity, or batting skill.  The most common measure of skill is the batting average, 

i.e. the ratio of hits to total at-bats.  The batting average is a crude index.  By weighting 

singles and home runs the same, it ignores the added productivity from hits of more than 

a single base.  Much better is the slugging percentage (total bases divided by at-bats) in 

which doubles count twice as much as singles, and home runs twice as much as doubles.  

Gerald Scully’s (1974) demonstration that baseball players earned a small fraction of 

their marginal revenue product under the reserve system utilized slugging percentage as a 

measure of productivity.  Nevertheless, both the batting average and slugging percentage 

ignore potentially relevant dimensions of batter productivity.  Sacrifices and walks, for 

example, are often productive and occasionally crucial, but are ignored in both measures.  

Indeed, since a fundamental element of batting skill is the ability to avoid making an out, 
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the failure to account for walks is a serious omission.1  These flaws in the batting average 

were understood as early as the 1950s, when Branch Rickey2 argued for the importance 

of "on base percentage," i.e. the fraction of at bats in which the player reached base 

successfully (Lewis, 2003; 71).3   

The statistic du jour among statistically-minded followers of the game is "OPS," 

which is the sum of on base percentage (O) and slugging percentage (S).  It has long been 

well known among this group, dubbed sabermetricians, that linear combinations of these 

two percentages are very highly correlated with runs scored, the primary objective of an 

offense.4  The essence of the Moneyball hypothesis is that, although it was well known by 

sabermetricians that on base percentage was an important component of offensive 

productivity, the ability to get on base was seriously undervalued in the baseball labor 

market. 

 

B.  A Probability-Based Measure of Productivity 

To assess the value of these measures of performance, we compare them with a 

more complicated, but conceptually superior alternative.  In theory, an ideal measure of 

productivity would be tied directly to the primary objective – winning the game.  This 

approach was pioneered in the academic literature by George R. Lindsey.  Lindsey 

                                                 
1   An inning in baseball is composed of three outs; once those are used up, any situational advantage 
derived from the number of men on base prior to that point is lost.  Outs are the ultimate scarce resource in 
baseball, hence the ability of a batter to avoid them – which necessarily entails advancement towards home 
plate – is of fundamental importance. 
2 Rickey was general manager of the Brooklyn Dodgers in the 1940s, and is best known for breaking the 
color barrier in baseball by signing Jackie Robinson. 
3  Andrew Zimbalist's (1992) critique of the Scully model presciently noted that on base percentage makes 
an important contribution to statistical models of team winning percentage.   
4  The construction of OPS is similar to the "runs created" formula devised by Bill James (2001; 330), 
hence the high correlation between the two.  James coined the moniker sabermetrics from the Society for 
American Baseball Research (SABR), of which James was a founding member. 
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(1961) analyzed the distribution of scoring throughout a game.  Although scoring was 

non-stationary across innings, Lindsey found that a statistical model based on sampling 

from an independent and identical distribution of runs tracked the difference in the score 

of the game quite well.  Lindsey concluded that his procedure provided a good estimate 

of "the probability that the game will eventually be won by the team that is ahead (p. 

718)."  In a subsequent paper, Lindsey (1963) used the same approach to conduct an 

illuminating analysis of managerial strategy.5 

Lindsey's method provides the basis for Jay Bennett and J.A. Fleuck's (1984) 

concept of player game percentage (PGP).  Bennett and Flueck measure player 

performance based on the impact of individual plays on the probability of winning, 

summed over all relevant plays.  Events in PGPs are weighted in exact proportion to their 

impact on the probability of winning the game, and hence can be interpreted as 

fundamental measures of productivity. 6    

We use the Lindsey-Bennett-Fleuck method to estimate weights for computing a 

probability-based measure of batting productivity, or PGP.  These weights are 

constructed by calculating the average impact of each event on the probability that a team 

wins the baseball game.7  Fortunately, the most relevant events number in the thousands 

over an entire season, so the sample size for measuring the representative probability 

                                                 
5  Lindsey's approach has been recently employed in empirical analyses of strategic choice in baseball.  
Turocy (2004) examines the strategic value of stolen base attempts, and Hakes and Sauer (2004) study 
sacrifice bunts, both adapting Lindsey's method to newly available play-by-play data.   
6 Since PGPs make use of detailed information about the state of the game before and after each play, they 
take into account potentially important information that is ignored in standard productivity estimates.  
Bennett's (1993) analysis of Shoeless Joe Jackson's performance in the infamous 1919 World Series – in 
which the timing of critical plays is of central importance - is perhaps the most notable application of the 
PGP measure of player productivity.   
7 Although state dependence is crucial for analyzing some questions, it is essential to net it out for an 
aggregate productivity measure.  For example, the difference in the probability impact of a homer in the 9th 
inning of a tight game and a blowout can be 0.5 or higher, which can significantly affect productivity 
estimates for players with a modest number of at bats.  We study this issue in Hakes and Sauer (2003). 
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change of an event is quite large.  The appendix contains a detailed description of the 

method. 

The estimated probability impacts for selected events are presented in Table 1.  

Both absolute and relative magnitudes appear quite sensible.  As would be expected, the 

probability impact of a single (0.0418) outweighs that of a walk (0.0281) due to the 

possibilities for runner advancement, and extra base hits are worth more than singles.  

Similar events yield similar impacts, such as walks (0.0281), and batters hit by a pitch 

(0.0284).  The effect of a batter grounding out into double play (GIDP) is more than three 

times the magnitude of a routine out,  reflecting not only the loss of two outs, but also an 

advantageous position on the bases. 

 

II.  Statistical Evaluation of OPS and PGP Measures of Productivity 

 We now evaluate OPS and its component parts as measures of productivity, in 

comparison to the theoretically ideal PGP.  For each team, we compute an aggregate OPS 

statistic based on all plate appearances during the season.  Similarly, we calculate and 

aggregate a team-specific PGP-based measure, using as weights the mean impact of each 

event on win probability from Table 1.  We label this statistic PGP*.  The standard of 

comparison is the ability to explain differences in win percentage across teams between 

PGP* and OPS and its components.  To incorporate the opposition's ability to score, we 

also construct measures of OPS and PGP achieved by a team's opponents throughout the 

season -- OPS against and PGP* against.   

 Table 2 reports coefficient estimates from regressing team winning percentage on 

our productivity measures for 1999 and 2000, the seasons for which we have the play-by-
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play data needed to calculate PGP* statistics.  In both the OPS and PGP* models, the 

estimated contribution of productivity by the own team and its opponents are of similar 

magnitude, but opposite sign.  While the PGP-based model has higher explanatory power 

(R2 of .8926 vs. .8682), the performance of the OPS-model is surprisingly strong.8  

Breaking apart OPS into its on base and slugging components inches the explanatory 

power a bit closer to the PGP* model.   

Why does OPS fare reasonably well when examined alongside PGP?  Although it 

ignores relevant dimensions of productivity, the implicit weights in OPS are generally 

close to those obtained using optimal PGP weights.  Table 1 shows that the average 

impact of a single on the probability of winning a baseball game is approximately 2/3 that 

of a double, and 1/3 that of a home run.  These ratios are similar to the relative 

contributions of these events to the OPS measure.  Hence the success of the OPS statistic 

is derived from that fact that the manner in which it weights the most common events is 

similar to the impact of these events on the probability of winning a baseball game. 

 The models in Table 2 are limited to the two seasons for which we can calculate 

PGP statistics.  Section III's analysis of the labor market uses more readily available 

performance data over five seasons from 1999-2003.  Table 3 makes use of this more 

extensive sample in estimating the impact of these productivity measures on winning 

percentage.  The results closely match those in Table 2, with the OPS-based measures 

explaining 87% of the variance in winning percentage across teams.   

                                                 
8  One can test whether one statistic adds information in the presence of the other.  We fail to reject the 
hypothesis that OPS adds no information to PGP (p-value of .699).  On the other hand, PGP* does add 
information to the regression with only OPS.  By this standard, the linear weights-based PGP statistics are 
superior measures of productivity.  But the level of effort required for PGP to modestly out-perform OPS 
suggests that the simple measure has its virtues. 
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 The final column of Table 3 breaks down OPS into its components, and imposes 

the restriction that, loosely speaking, the contribution of Yankee bats to a Yankee victory 

is equivalent to the contribution of Yankee bats to their opponent's defeat.  This model is 

used to assess a claim made in Moneyball (p. 128) that, contrary to conventional wisdom, 

on base percentage is more important than slugging percentage on a point-for-point basis.  

The coefficients in this regression are consistent with this claim: those for on base 

percentage are more than twice as large as the coefficients for slugging.   

  

III.  Valuation of Batting Skills in Baseball's Labor Market 

 In Scully’s (1974) seminal model of pay and performance in baseball, a player’s 

marginal revenue product is solely derived from his contribution to team winning 

percentage.  The final column of Table 3 demonstrates that a one point change in team on 

base percentage makes a significantly larger contribution to team winning percentage 

than a one point change in team slugging percentage.  As an individual player’s attempts 

constitute similar shares of all team offensive percentage statistics, an efficient labor 

market would (ceteris paribus) reward on base percentage and slugging percentage in the 

same proportions that those statistics contribute to winning.  

 We estimate earnings equations for position players for the 2000-2004 seasons.   

The dependent variable is the logarithm of annual salary.  All productivity variables are 

calculated based on performance in the prior year, and all players with more than 130 at 

bats in the previous season are included in the regressions.9  The specification follows 

                                                 
9 Since salary is determined prior to performance and is based on expected productivity, we use the prior 
year's performance as an indicator of expectations.  A minimum of 130 at bats is required for a player to 
qualify for honors as rookie of the year.  This provides an objective cutoff so that we employ productivity 
measures exclusively for players with a large sample of at bats. 
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that of Lawrence Kahn (1993), and includes indicator variables for labor market status.  

The base category is for younger players who have limited negotiating power under the 

collective bargaining agreement.  Indicator variables reflect competitive bidding 

conditions for players eligible for arbitration and free agency, respectively.  Other 

relevant control variables include playing time, as measured by plate appearances, and 

indicator variables for the more demanding defensive positions of catcher and infield.  

Following Kahn (1993), we define an infielder as a player with a primary defensive 

position at either second base, third base, or shortstop.10 

 The first column of results in Table 4 reports coefficient estimates from the log 

salary regression when all five years of data are pooled.  All significant coefficients have 

the expected signs.  There are large positive returns to contracting freedom.   We estimate 

an incremental return to arbitration-eligible players relative to those subject to 

monopsony bargaining, and a still greater return for free agents.  We also obtain positive 

and statistically significant returns to expected playing time.  The returns to on base 

percentage and slugging are both positive, as expected.  However, the coefficient for 

slugging is significantly greater than the coefficient for on base percentage, which is the 

reverse of their importance to team success.  This is consistent with Moneyball's claim 

that on base percentage is undervalued in the labor market. 

 Columns 2 through 6 of Table 4 display parameter estimates for the same 

equation for each individual season.  These results indicate that pooling is inappropriate, 

as labor market returns to player attributes appear to differ across seasons.  This is clearly 

                                                 
10 Productivity and positional data were obtained from the Lahman baseball database at the Baseball 
Archive, http://baseball1.com.   Data on salaries and labor market status were obtained from Doug Pappas' 
Business of Baseball data archive, http://roadsidephotos.sabr.org/baseball/data.htm. 
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the case for the estimated returns to on base percentage and slugging percentage, as   

Figure 1 illustrates.  

 In the first four years of data, the slugging coefficients are all statistically 

significant and of similar magnitude, ranging between 2.05 and 3.10.  In contrast, the on 

base percentage coefficients are smaller than their slugging counterparts (between –0.13 

and 1.36) in each of these years and are not significantly related to log salary.  The lack 

of a market premium for hitters with superior skill at reaching base validates the 

Athletic's systematic approach to identifying such players, and thereby winning games at 

a discount relative to their competition.11 

 The relative valuation of on base and slugging percentage is abruptly reversed for 

the year 2004.  The returns to slugging are similar in 2004 to prior years, but this is the 

first year for which the ability to reach base is statistically significant.  The labor market 

in 2004 appears to have substantially corrected the apparent inefficiency in prior years, as 

the coefficient of on base percentage jumps to 3.68, and the ratio of the monetary returns 

to reaching base and slugging is very close to the ratio of the statistics’ contributions to 

team win percentage.   

 

IV.  Concluding Remarks 

Our analysis supports the hypothesis that baseball's labor market was inefficient at 

the turn of the twenty-first century.  Exploitation of this inefficiency by the Oakland 

Athletics' organization is traced by Lewis (2003; 58-63) to an explicit decision, inspired 

                                                 
11 As discussed in Lewis (2003, xii), Doug Pappas (chairman of SABR's Business of Baseball Committee), 
calculated the incremental cost of of winning a game during this period.  Only two teams spent less than 
$1m to win a game.  The Athletics' cost of about half a million dollars was the lowest, and about 1/6 the 
cost of the least efficient teams.  Pappas (2002) discusses the calculation and provides costs estimates for 
all teams during the 2001 season. 
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by the work of Bill James, to fuse statistical analysis of the game into a management 

strategy.  To execute this strategy, the A's reached outside baseball circles and hired 

talented young analysts with Ivy League pedigrees and an interest in the game. 

The particular margin of inefficiency emphasized in Moneyball, undervaluation of 

a batter's ability to get on base, appears to have been substantially if not completely 

eroded by the time the book was published.  Despite protests from baseball traditionalists 

(Lewis, 2004) that the book was somehow misguided, several major league teams had by 

this time decided to imitate the strategy.   

 During and after the 2003 season, two young analysts from the Athletics' front 

office were hired as General Managers by the Toronto Blue Jays and the Los Angeles 

Dodgers (Joe Saraceno, 2004).12  Although the Boston Red Sox failed in their attempt to 

hire both the Athletics' General Manager (Billy Beane) and Assistant GM, they followed 

Beane's advice by hiring Theo Epstein, making him the youngest GM in baseball history 

(Shaughnessy, 2003).  In addition, the Sox hired the father of sabermetrics, Bill James 

himself, in an advisory capacity.  This diffusion of statistical knowledge across a handful 

of decision-making units in baseball was apparently sufficient to correct the mis-pricing 

of skill.   

 Finally, we close on a humble note.  Our work is essentially an assessment of 

Lewis' argument, and as such is merely an after-the-fact replication of work done by the 

innovators at the heart of his book.  But we do find that they (and Lewis) were right, and 

further, that the process that they set in motion had in large part been completed by the 

time the book was published.  That the addition of only a few individuals was able to 

correct a long-standing anomaly illustrates both the inefficiency which can result when 
                                                 
12 For most franchises, the General Manager is the executive with authority over personnel decisions.    
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markets are isolated from competition, and the swiftness of market corrections once entry 

occurs. 
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Table 1:  Average Effect of Selected Events Upon 

Probability of Winning 
 
Event 

 
Frequency 

Mean Change 
in P(win) 

Std. Error 

Walk    17,028 0.0281 0.0002 
Hit by pitch      1,572 0.0284 0.0006 
Single    29,686 0.0418 0.0003 
Double      8,902 0.0646 0.0007 
Triple         952 0.0948 0.0026 
Home run      5,693 0.1217 0.0013 
Strikeout    31,254 -0.0276 0.0001 
Ground out    35,191 -0.0220 0.0001 
Fly out    25,279 -0.0248 0.0001 
Ground into DP      3,833 -0.0753 0.0010 
Notes:  The table reports the average change in the 
probability of winning associated with each event across all 
game states, along with the frequency of each event and the 
standard deviation of the mean probability.  Based on 
scoring probabilities from each game state, using all plays 
from the 1999 season.  Data Source:  Stats Inc. 
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Table 2 – Predicting Winning Percentage:  PGP vs. OPS 
 Model 
 1 2 3 
Constant 0.500 

(0.003) 
.483 

(0.102) 
.400 
(0.124) 

PGP* 0.0071 
(0.0005) 

  

PGP* Against 0.0069 
(0.0005) 

  

OPS  1.325 
(0.097) 

 

OPS Against  (-1.304) 
(0.092) 

 

On Base   2.0060 
(0.3849) 

On Base Against   -1.5539 
(0.3768) 

Slugging   0.9898 
(0.2064) 

Slugging Against   -1.1179 
(0.2227) 

Number of Obs 60 60 60 
R2 .8926 .8682 .8768 
Notes: The dependent variable is team win percentage, 
for years 1999-2000.  The data are season level 
aggregates.  PGP* statistics constructed from situation-
specific play-by-play data for every game of the 1999 
and 2000 seasons.  We have only two years of play-by-
play data for comparison, hence the reduced number of 
observations.  Source:  Stats Inc. and ESPN.com.   
Standard errors are in parentheses. 
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Table 3 – Productivity Estimates: 

The Impact of On Base and Slugging Percentage on Winning 
 Model 
 1 2 3 
Constant 0.558 

(0.073) 
0.508 

(0.073) 
.500 

(0.002) 
OPS 1.261 

(0.061) 
  

OPS Against -1.337 
(0.055) 

  

On Base   2.121 
(0.255) 

2.032 
(0.180) 

On Base Against  -1.912 
(0.256) 

-2.032R 

Slugging   0.812 
(0.141) 

0.900 
(0.105) 

Slugging Against  -0.995 
(0.144) 

-0.900 R 

Number of Observations 150 150 150 
R2 .871 .885 .882 
Hypothesis Tests 
  Model 2, H0:     
     On Base = -On Base Against   
     Slugging =  -Slugging Against 
     F(2,145) =  0.49, p-value = 0.613 
  Model 3, H0:   
     On Base = Slugging  
     F(1,147) =  17.21, p-value = 0.0001 
 
Notes:  Data are aggregate statistics for all 30 teams from 1999-
2003.  Coefficient estimates obtained using OLS.  Standard errors 
are in parentheses; ***, **, and * mean that the coefficient is 
statistically different from zero at the 1-, 5-, and 10-percent level, 
respectively.  The superscript R indicates the coefficient was 
restricted to equal its counterpart in the regression. 
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 Table 4 – The Baseball Labor Market's Valuation of On Base and Slugging Percentage 

       
 All Years 2000 2001 2002 2003 2004
On Base  1.360 1.334 -0.132 0.965 1.351 3.681
 (0.625) (1.237) (1.230) (1.489) (1.596) (1.598)
Slugging  2.392 2.754 3.102 2.080 2.047 2.175
 (0.311) (0.628) (0.613) (0.686) (0.850) (0.788)
Plate Appearances 0.003 0.003 0.003 0.003 0.003 0.003
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Arbitration Eligible 1.255 1.293 1.106 1.323 1.249 1.323
 (0.047) (0.102) (0.100) (0.100) (0.111) (0.115)
Free Agency 1.683 1.764 1.684 1.729 1.663 1.575
 (0.044) (0.096) (0.092) (0.097) (0.107) (0.105)
Catcher Dummy 0.152 0.137 0.065 0.208 0.343 0.059
 (0.056) (0.124) (0.116) (0.122) (0.134) (0.133)
Infielder Dummy -0.029 0.060 0.069 -0.087 -0.054 -0.100
 (0.040) (0.087) (0.083) (0.086) (0.095) (0.098)
Intercept 10.083 10.078 10.347 10.490 10.289 9.782
 (0.170) (0.360) (0.321) (0.358) (0.387) (0.414)
Number of observations 1736 353 357 344 342 340
R2 0.675 0.676 0.728 0.695 0.655 0.635
Notes:  The dependent variable is ln Salary for year t, and performance variables are 
from year t-1.  0/1 dummies for each year are included in the pooled regression.  
Standard errors in parentheses.  The sample includes all players with at least 130 plate 
appearances during the relevant season. 
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Figure 1.  Labor Market Returns to On Base and Slugging Percentage Over Time 
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APPENDIX 
 

Measuring the Impact of Plays on the Probability of Winning 
 

To measure the impact of a play, we must construct estimates of the probability of 

winning before and after the play.  This requires knowledge of the conditional probability 

of scoring in each of the various possible game situations, or states.  The state of the 

game in this context means the number of outs and the number and location of men on 

base.  Table A1 describes the conditional probability distribution of scoring in each 

possible state.  The distributions were constructed from play-by-play data obtained from 

Stats Inc., consisting of over 190,000 observations from the 1999 season.  Each of the 24 

possible states contains at least 524 observations.  Moving down the first column, we see 

that the probability of not scoring any runs, conditional on there being no men on base, 

increases from 0.695 to 0.918 as the number of outs increases from 0 to 2.  In the far right 

column we see that the expected number of runs scored in an inning diminishes from 

0.577 to 0.124 as we make this same progression from 0 to 2 outs with no men on base. 

Using backward induction and the probabilities in Table A1, we can calculate the 

probability of winning in each inning, conditional on the run difference, basecode and 

number of outs.  Let PH (h,I,b,o,d) represent the probability that the home team, H, wins a 

game situated in the home half (h) of inning I, with runners indicated by basecode b, o 

outs, and facing a run difference of d runs.  If the home team is trailing at the start of the 

bottom of the ninth inning, the probability that it will win is 

PH (1,9,0,0,d) = PS (R>d|0,0) + .5* PS (R=d|0,0) 

where PS(R|b,o) is the stationary probability function for scoring R runs during the inning 

conditional on basecode and outs, with a score difference (runs less opponents runs) of d 
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runs at the start of the ninth.  At the start of the ninth, the conditional probabilities are 

taken from the first row of Table A1.  As outs are recorded and/or runners advance, the 

probability is updated to match the new state of the game.  The relevant columns for the 

probability sums also change when scoring alters the run differential d. 

Once we know the probability that the home team overcomes a deficit in the 

bottom of the ninth, we can take any run difference facing the visiting team in the top of 

the ninth, the probability it scores and hence changes the run difference, and the 

probability that the home team overcomes this new difference (if necessary), and thereby 

compute the probability that the visiting team is victorious given any situation it faces in 

the top of the ninth.  For example, 

 ∑
=

+−−=
9

0
)))(,0,0,9,1(1)(0,0|(),0,0,9,0(

R
HSV RdPRPdP    

where PV(h,I,b,o,d) is the visitor’s probability of winning the game.13  In recursive 

fashion, the probabilities can be computed in this manner all the way to the start of the 

game. 

These computed probabilities have two shortcomings, but we do not believe they 

compromise our approach.  First, batting order and endgame effects could render scoring 

non-stationary, so that the probabilities from Table A1 would not be appropriate for use 

in all situations.  As batting orders are ideally set up at the start of the game, scoring 

might be greater in the first inning than in other innings.  Similarly, strategic choices by 

managers may alter scoring distributions in the late innings of close games.  Second, the 

quality of the batting lineup and the pitchers will also affect the numbers in the table.  But 
                                                 
13 The summation theoretically should run from 0 to infinity, but we use a maximum of nine runs scored in 
a half inning.  Innings of this magnitude are extremely rare, and result in large score differences where the 
probability of winning approaches 1.00.  This simplification increases computational efficiency while 
having a negligible effect on the estimates. 
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in both cases, it is likely that these effects will impact all numbers by a similar 

magnitude.  Since our measure of performance, PGP, is defined as the difference between 

the win probabilities before and after the play, the differencing of any bias of constant 

magnitude will result in an unbiased PGP estimate.14  

 The sum of the team’s PGP values for all events that take place while it is on 

offense during the season – outs, walks, sacrifice flies, home runs, etc. – represents the 

team’s offensive productivity.  The third column of Table A2 presents the unadjusted 

PGP totals for each team for the 1999 season.  The fourth column, labeled PGP*, weights 

each event by its mean change in probability as presented in Table 1, which removes the 

effects of the timeliness of the event.  Teams are ranked in Table A2 by PGP*.  The 

difference between offensive team PGP and PGP* may be due either to differing 

productivity in “clutch” situations, or it may be just luck.15 

 For purposes of comparison, the fifth column of Table A2 includes each team's 

OPS statistic, as OPS is the most common single measure of offensive productivity in use 

today.16  The correlation coefficient between OPS and PGP* is very high at 0.9923.  The 

rightmost column of Table A2 displays team PGP* values normalized to the same scale 

as OPS.17  The difference between the two measures is quite small in all cases.  PGP* is 

more highly correlated with team success, as Table 2 demonstrates.  But the close 

correspondence between OPS and the theoretically superior measure of PGP* confirms 

that, OPS is a remarkably good index of productivity.  
                                                 
14 A standard χ2 test rejects the null hypothesis that the expected number of runs is stationary across innings 
(χ2

9 = 166.4; p = 0.000) due to these reasons.   Non-stationarity in the probability of scoring and the effect 
of high(low) scoring teams upon scoring distributions remain issues that require further exploration.   
15 We explore the nature of clutch performance in Hakes and Sauer (2003). 
16  Team OPS is calculated in the same manner as an individual player’s OPS, pooling the results of all 
plate appearances by all batters on the team.  
17   The normalization is based on coefficients from the OLS regression:  OPS = 0.791 + 0.0055 PGP* (R2 
= 0.985). 
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Table A1:  Probability of Runs Scored in an Inning, by Basecode and Outs 
Base 
code Outs p(0) p(1) p(2) p(3) p(4) p(5+)   E(runs) Obs 

0 0 0.695 0.159 0.078 0.038 0.017 0.014 0.577 45495
0 1 0.818 0.105 0.046 0.019 0.007 0.006 0.313 31968
0 2 0.918 0.054 0.019 0.006 0.002 0.001 0.124 25392
1 0 0.558 0.168 0.138 0.071 0.035 0.031 0.972 10804
1 1 0.709 0.117 0.097 0.044 0.018 0.016 0.600 12227
1 2 0.858 0.058 0.056 0.019 0.005 0.004 0.267 11946
2 0 0.368 0.352 0.139 0.074 0.040 0.027 1.170 3470
2 1 0.585 0.236 0.098 0.050 0.017 0.014 0.727 5867
2 2 0.780 0.147 0.047 0.017 0.005 0.003 0.329 7448
3 0 0.136 0.508 0.189 0.105 0.025 0.038 1.513 524
3 1 0.329 0.485 0.111 0.044 0.022 0.010 0.980 2010
3 2 0.731 0.186 0.054 0.018 0.006 0.004 0.398 3054
4 0 0.349 0.218 0.164 0.130 0.071 0.068 1.616 2886
4 1 0.569 0.160 0.104 0.094 0.039 0.034 0.998 5123
4 2 0.760 0.108 0.060 0.048 0.016 0.008 0.479 6435
5 0 0.116 0.435 0.165 0.136 0.082 0.067 1.889 1068
5 1 0.340 0.380 0.118 0.091 0.044 0.027 1.214 2277
5 2 0.729 0.146 0.054 0.051 0.014 0.006 0.496 2886
6 0 0.154 0.246 0.308 0.138 0.072 0.082 2.034 668
6 1 0.291 0.296 0.212 0.101 0.054 0.045 1.490 1695
6 2 0.727 0.048 0.146 0.047 0.017 0.016 0.628 1911
7 0 0.114 0.257 0.208 0.120 0.153 0.148 2.509 802
7 1 0.315 0.260 0.141 0.112 0.094 0.078 1.691 1949
7 2 0.672 0.091 0.107 0.055 0.049 0.025 0.807 2356

Notes:  Data Source:  Stats Inc. Play-by-Play data for 1999.  Basecodes: 1 = runner on 1st; 
2 = runner on 2nd; 3 = runner on 3rd; 4 = runners on 1st and 2nd; 5 = runners on 1st and 3rd; 
6 = runners on 2nd and 3rd; 7 = bases loaded.  Calculations extend to four decimal places, 
allow for scoring of up to 9 runs in an inning, and track p(win) for run differentials of  
(+/-) 9 runs. 
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Table A2:  Offensive PGP Totals and OPS for 1999 

Rank Team PGP PGP* OPS 
Normed 
PGP* 

1 CLE 15.603 8.865 0.840 0.840 
2 TEX 10.359 7.565 0.840 0.833 
3 NYY 5.420 4.614 0.819 0.816 
4 COL 7.047 4.379 0.819 0.815 
5 ARI 5.162 2.831 0.805 0.807 
6 TOR 4.038 2.735 0.810 0.806 
7 OAK 5.377 2.268 0.801 0.804 
8 BAL -1.739 2.117 0.800 0.803 
9 BOS -0.253 1.384 0.798 0.799 
10 SEA 1.600 1.255 0.798 0.798 
11 NYM 2.165 1.077 0.797 0.797 
12 CIN 1.938 0.923 0.792 0.796 
13 SF_ -1.088 0.549 0.790 0.794 
14 ATL -0.536 -1.271 0.777 0.784 
15 HOU -4.411 -1.562 0.775 0.783 
16 KC_ -3.536 -2.111 0.781 0.780 
17 PHI -5.745 -2.325 0.782 0.778 
18 MIL -1.756 -2.877 0.779 0.775 
19 STL -4.437 -3.849 0.764 0.770 
20 CWS -3.409 -4.030 0.766 0.769 
21 LA_ -9.204 -4.960 0.760 0.764 
22 DET -8.696 -5.271 0.768 0.762 
23 PIT -9.882 -7.280 0.753 0.751 
24 CHC -3.259 -8.126 0.749 0.747 
25 TB_ -9.719 -8.274 0.754 0.746 
26 MON -9.762 -8.335 0.751 0.746 
27 SD_ -14.152 -11.457 0.725 0.728 
28 FLA -15.741 -13.601 0.719 0.717 
29 MIN -16.087 -13.624 0.712 0.717 
30 ANA -13.018 -14.050 0.716 0.714 
Notes:  Teams are ranked by PGP*.  Normed PGP* is 
PGP* normalized to the scale of OPS, using OLS 
regression coefficients.   
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